Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Pathogens ; 9(8)2020 Jul 29.
Article in English | MEDLINE | ID: covidwho-2225475

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in more than 16 million infections and more than 600,000 deaths worldwide. There is an urgent need to develop a safe and effective vaccine against SARS-CoV-2. Currently, several strategies are being pursued to develop a safe and effective SARS-CoV-2 vaccine. However, each vaccine strategy has distinct advantages and disadvantages. Therefore, it is important to evaluate multiple vaccine platforms to select the most efficient vaccine platform for SARS-CoV-2. In this regard, Newcastle disease virus (NDV), an avian virus, has several well-suited properties for development of a vector vaccine against SARS-CoV-2. Here, we elaborate on the idea of considering NDV as a vaccine vector for SARS-CoV-2.

2.
Viruses ; 12(7)2020 06 28.
Article in English | MEDLINE | ID: covidwho-683587

ABSTRACT

Viral vectored vaccines are desirable alternatives for conventional infectious bronchitis virus (IBV) vaccines. We have recently shown that a recombinant Newcastle disease virus (rNDV) strain LaSota expressing the spike (S) protein of IBV strain Mass-41 (rLaSota/IBV-S) was a promising vaccine candidate for IBV. Here we evaluated a novel chimeric rNDV/avian paramyxovirus serotype 2 (rNDV/APMV-2) as a vaccine vector against IBV. The rNDV/APMV-2 vector was chosen because it is much safer than the rNDV strain LaSota vector, particularly for young chicks and chicken embryos. In order to determine the effectiveness of this vector, a recombinant rNDV/APMV-2 expressing the S protein of IBV strain Mass-41 (rNDV/APMV-2/IBV-S) was constructed. The protective efficacy of this vector vaccine was compared to that of the rNDV vector vaccine. In one study, groups of one-day-old specific-pathogenic-free (SPF) chickens were immunized with rLaSota/IBV-S and rNDV/APMV-2/IBV-S and challenged four weeks later with the homologous highly virulent IBV strain Mass-41. In another study, groups of broiler chickens were single (at day one or three weeks of age) or prime-boost (prime at day one and boost at three weeks of age) immunized with rLaSota/IBV-S and/or rNDV-APMV-2/IBV-S. At weeks six of age, chickens were challenged with a highly virulent IBV strain Mass-41. Our challenge study showed that novel rNDV/APMV-2/IBV-S provided similar protection as rLaSota/IBV-S in SPF chickens. However, compared to prime-boost immunization of chickens with chimeric rNDV/APMV-2, rLaSota/IBV-S and/or a live IBV vaccine, single immunization of chickens with rLaSota/IBV-S, or live IBV vaccine provided better protection against IBV. In conclusion, we have developed the novel rNDV/APMV-2 vector expressing S protein of IBV that can be a safer vaccine against IB in chickens. Our results also suggest a single immunization with a LaSota vectored IBV vaccine candidate provides better protection than prime-boost immunization regimens.


Subject(s)
Avulavirus/genetics , Coronavirus Infections/veterinary , Genetic Vectors/genetics , Infectious bronchitis virus/immunology , Poultry Diseases/prevention & control , Viral Vaccines/administration & dosage , Animals , Avulavirus/metabolism , Chickens , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Genetic Vectors/metabolism , Infectious bronchitis virus/genetics , Infectious bronchitis virus/pathogenicity , Poultry Diseases/virology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Proteins/administration & dosage , Viral Proteins/genetics , Viral Proteins/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL